Synthesis of some phospha-alkenes with the fluoromesityl $(2,4,6-(CF_3)_3C_6H_2)$ group on phosphorus and of their complexes with $[PtCl_2(PEt_3)]_2$

Keith B. Dillon and Helen P. Goodwin

Chemistry Department, University of Durham, South Road, Durham, DH1 3LE (UK) (Received May 6, 1993)

Abstract

The phospha-alkenes ArP=CR¹R², where Ar = 2,4,6-(CF₃)₃C₆H₂, and R¹ = R² = Cl (1), R¹ = SiMe₃, R² = H (2), or R¹ = Ph, R² = H (3), have been synthesized. Compound 1 was isolated and fully characterized, but 3 could only be identified in solution. All three phospha-alkenes react with the dimeric species [PtCl₂(PEt₃)]₂ in a 2:1 ratio to form η^1 -bonded platinum(II) complexes, the structures of which may be readily deduced from the nuclear magnetic resonance data.

Key words: Platinum; Phospha-alkenes; Fluoromesityl

1. Introduction

Many compounds containing the -P=C < group (phospha-alkenes) have been prepared in recent years, and their coordination chemistry extensively investigated [1,2]. None has been described, however, with the fluoromesityl $2,4,6-(CF_3)_3C_6H_2$ (Ar) group attached to phosphorus. In a recent paper we reported the synthesis and characterization of some organometallic complexes of the symmetrical diphosphene ArP=PAr [3]. This compound is remarkably stable, even in air [3], and does not form an adduct with vanadocene [4], showing that the electron-withdrawing Ar groups are extremely effective in deactivating the diphosphene. It was therefore of considerable interest to synthesize phospha-alkenes with the Ar group on phosphorus, and to examine their stability and coordination chemistry.

2. Results and discussion

Three new phospha-alkenes ArP=CR¹R² have been prepared (R¹ = R² = Cl (1)) (R¹ = SiMe₃; R² = H (2)) ($R^1 = Ph$; $R^2 = H$ (3)), the first two of which were sufficiently stable to be isolated. Compound 3 was readily identifiable in solution from its ³¹P nuclear magnetic resonance (NMR) spectrum, but could not be isolated in a pure state. The ³¹P chemical shifts for all three compounds, together with other characterization data, are given in Section 3.

Attempts were also made to replace chlorine in $ArP=CCl_2$ (1) by other groups. BuLi was added to a solution of 1 in tetrahydrofuran (THF) at $-78^{\circ}C$, but the solution blackened immediately, even at this temperature. Dropwise addition of a solution of Me₃SiCl in THF at this temperature, followed by warming of the mixture to room temperature, yielded no evidence for the formation of ArP=C(Cl)SiMe₃. Direct reaction of ArLi [3,5] with ArP=CCl₂ in a mixture of Et₂O and THF at $-10^{\circ}C$ also failed to generate ArP=C(Cl)Ar, the only ³¹P signal arising from starting material, while the ¹⁹F spectrum confirmed the formation of some ArCl [6]. This behaviour was not unexpected because of the low basicity of ArLi, as illustrated by the reaction ArLi + CCl₄ \rightarrow ArCl.

The coordination chemistry was investigated by treating each of the phospha-alkenes with 0.5 molar equivalent of the dimeric platinum(II) species $[PtCl_2(PEt_3)]_2$, which led to the formation of

Correspondence to: Dr. K.B. Dillon.

Fig. 1. High frequency region of the 31 P NMR spectrum from the reaction of 3 with [PtCl₂(PEt₃)]₂: S, starting material (3); T, *trans* isomer; C, *cis* isomer.

monomeric η^1 -bonded complexes in each case, as shown by the magnitude of the ${}^{1}J_{P-Pt}$ values (see Section 3). Interestingly, however, only the thermodynamically more stable *cis* isomer [7,8] was observed for 1, as shown by the very small ${}^{2}J_{PP}$ coupling between the phosphorus (P_B) of the PEt₃ group and P_A in the phospha-alkene ligand [7,8], while 2 formed the *trans* isomer, stable for at least 6 h. Compound 3 initially yielded a mixture of the *cis* and *trans* isomers, both clearly detectable in the spectrum recorded after 30 min (Fig. 1), but, after 2 h, only the *cis* isomer was present.

These results indicate that the substituents on carbon have a significant influence on the nature of the product. It seems probable that in all cases the formation of the *trans* complex is kinetically favoured, but that the thermodynamically stable species will be the cis isomer [8,9]. For phospha-alkene 1 the trans complex was not detected, indicating that conversion to the cis analogue is very rapid in this instance. Compound 3 provided conclusive NMR evidence for the coexistence of both isomers of the platinum(II) complex in solution, although conversion of the trans isomer to its cis analogue was complete after 2 h, whereas the trans derivative of 2 was stable for at least 6 h. While more prolonged studies would be necessary to clarify whether the complex of 2 ultimately reverts to the expected cis form, the results allow the relative rates of isomerization to be compared.

3. Experimental details

All manipulations, including NMR sample preparation, were carried out either *in vacuo* or under dry nitrogen. ³¹P and ¹⁹F NMR spectra were recorded on a Bruker AC250 instrument at 101.256 MHz (³¹P) and 235.360 MHz (¹⁹F). Chemical shifts are measured relative to external 85% H₃PO₄ and CFCl₃ respectively, with the high frequency (downfield) direction taken as positive. C and H analyses were obtained by microcombustion on a Perkin–Elmer 240 instrument. The UV–visible spectra were recorded for solutions in CCl₄ (1 and 2) or THF (3) in quartz cells, with the solvent system in the reference beam, between 200 and 450 nm. Mass spectra were recorded on a VG Analytical 7070E instrument, operating in the electron impact (EI) mode.

3.1. Preparation of $ArP=CCl_2$ (1)

Two procedures, shown in the following equations, were used to synthesize the precursor phosphine $ArP(CHCl_2)Cl$, the second equation giving higher yields:

$$CHLiCl_{2} + ArPCl_{2} \rightarrow ArP(CHCl_{2})Cl \xrightarrow{DBU} ArP=CCl_{2}$$
(1a)
$$CHLiCl_{2} \xrightarrow{(1)\frac{1}{2}CdCl_{2}} ArP(CHCl_{2})Cl \xrightarrow{DBU} ArP=CCl_{2}$$

In both cases, CHLiCl₂ (11.8 mmol) was prepared in THF: Et₂O: light petroleum (4:1:1 v/v/v) at -130° C (pentane-liquid nitrogen slush bath), as described previously [10]. In the first method, this reagent was added to a stirred solution of ArPCl₂ (13.0 mmol) in Et₂O at -140° C. The mixture, which turned red, was allowed to warm to room temperature. The white precipitate was filtered off and the solvent removed *in vacuo* to yield a yellow oil. The ³¹P NMR spectrum showed the presence of some unchanged ArPCl₂ ($\delta = 145.4$ ppm),

the required ArP(CHCl₂)Cl ($\delta = 63.6$ ppm) and ArP(CHCl₂)₂ ($\delta = 6.5$ ppm). The tertiary phosphine ArP(CHCl₂)₂ was removed as a solid by crystallization from Et₂O at -40°C, and the product ArP(CHCl₂)Cl was obtained by distillation at 68°C (0.1 Torr) as a clear oil, with a 41% yield. Anal. Found: C, 27.3; H, 1.08%. C₁₀H₃Cl₃F₉P calc.: C, 27.8; H, 0.70%. ³¹P NMR: 63.6 (septet, ⁴J_{PF} = 49.8 Hz) ppm. ¹⁹F NMR: -54.7 (d, 6F); -64.8 (s, 3F) ppm.

The alternative route to this chlorophosphine involved the addition of $CdCl_2$ (5.9 mmol) directly to the stirred solution of $CHLiCl_2$ in Et_2O at $-130^{\circ}C$. The reaction mixture was allowed to warm to $0^{\circ}C$ and stirred for 1 h; this was followed by the addition in one portion of $ArPCl_2$ (12 mmol) in Et_2O . The solution was refluxed for 1 h, allowed to cool to room temperature, filtered and concentrated *in vacuo*. The ³¹P NMR spectrum showed that the product was exclusively the desired product $ArP(CHCl_2)Cl$, which was isolated as above with a 65% yield.

In both cases an equimolar quantity of DBU in THF was then added dropwise during 5 min to a stirred solution of ArP(CHCl₂)Cl in THF at 0°C. The solution was allowed to warm to room temperature, and the white precipitate of DBU.HCl filtered off. The THF was removed by distillation at atmospheric pressure, and the product 1 distilling at 76°C (0.7 Torr) was collected as a clear oil with a 60% yield. Anal. Found: C, 30.6; H, 0.92%. C₁₀H₂Cl₂F₉P calc.: C, 30.4; H, 0.51%. UV-visible (CCl₄): $\lambda_{max} = 327$, 227 nm, MS (EI): 394 (13.1%, ArP=CCl₂⁺), 359 (100%, ArP = CCl⁺). ³¹P NMR (CDCl₃): 202.9 (septet, ⁴J_{PF} = 21.4 Hz) ppm. ¹⁹F NMR (CDCl₃): -61.0 (d, 6F, ⁴J_{PF} = 21.4 Hz): -65.1 (s, 3F) ppm.

3.2. Preparation of $ArP=C(SiMe_3)H(2)$ The preparation was carried out according

The preparation was carried out according to:

$$\operatorname{Me}_{3}\operatorname{SiCH}_{2}\operatorname{MgBr} \xrightarrow{(1)_{\frac{1}{2}}\operatorname{CdCl}_{2}}_{(2)\operatorname{ArPCl}_{2}}\operatorname{ArP}(\operatorname{CH}_{2}\operatorname{SiMe}_{3})\operatorname{Cl} \xrightarrow{\operatorname{DBU}}$$

 $ArP=C(SiMe_3)H$ (2)

A solution of Me_3SiCH_2MgBr (40 mmol) in Et_2O was added dropwise during 5 min to a solution of $CdCl_2$ (20.1 mmol) in Et_2O at 0°C, and the mixture stirred at this temperature for 1 h. The resulting paleyellow solution was added in one portion to a stirred solution of $ArPCl_2$ (43.8 mmol) in Et_2O at room temperature, and the whole brought gradually to reflux and kept there for 4 h. The precipitate was filtered off and the solvent removed *in vacuo* to yield a yellow oil, which was purified by vacuum distillation. The first fraction consisted of unchanged $ArPCl_2$ (boiling point (b.p.), 62°C (0.5 Torr)), and the product $ArP(Cl)(CH_2)$ SiMe₃) was isolated as a very pale-yellow oil, (b.p., 84°C (0.5 Torr)) with a 53% yield. Anal. Found: C, 36.5; H, 3.30%. C₁₃H₁₃ClF₉PSi calc.: C, 35.9; H, 3.01%. ³¹P NMR (CDCl₃): 92.1 (septet, ${}^{4}J_{PF} = 51.8$ Hz) ppm. ¹⁹F NMR (CDCl₃): -54.7 (d, 6F, ${}^{4}J_{PF} = 51.8$ Hz); -64.0 (s,3F) ppm. A solution of DBU (3.5 mmol) in THF was then added dropwise during 5 min to a stirred solution of ArP(Cl)(CH₂SiMe₃) (3.5 mmol) in THF at 0°C. The precipitate formed was filtered off, and the solvent removed *in vacuo* to give 2 as a yellow oil, (crude yield, 77%). UV-visible (CCl₄): λ_{max} 325, 260 nm. ³¹P NMR (CDCl₃): -56.7 (d, 6F, ${}^{4}J_{PF} = 26.5$ Hz) ppm. ¹⁹F NMR (CDCl₃): -56.7 (d, 6F, ${}^{4}J_{PF} = 26.5$ Hz); -64.1 (s, 3F) ppm.

3.3. Preparation of ArP = C(H)Ph (3)

The precursor of this phospha-alkene, $ArP(CH_2Ph)$ -Cl, was prepared by two different methods, as shown in the following equations, either directly by the action of ArLi [5] on PhCH₂PCl₂, or via the organocadmium reagent (PhCH₂)₂Cd:

ArLi + PhCH₂PCl₂
$$\longrightarrow$$

ArP(CH₂Ph)Cl $\xrightarrow{\text{DBU}}$ ArP=C(H)Ph (3a)
PhCH₂MgBr $\xrightarrow{(1)\frac{1}{2}CdCl_2}$ ArP(CH₂Ph)Cl $\xrightarrow{\text{DBU}}$

ArP=C(H)Ph (3b)

In the first procedure, ArLi (11.5 mmol) in Et_2O was added dropwise during 5 min to a stirred solution of $PbCH_2PCl_2$ (11.3 mmol) in Et₂O at -78°C. The mixture was allowed to warm to room temperature, the LiCl filtered off, and the filtrate concentrated in vacuo to yield a yellow oil, which was further purified by vacuum distillation. A colourless oil was collected at 122°C (0.3 Torr) with a 75% yield. Anal. Found: C, 43.8; H, 2.00%. C₁₆H₉ClF₉P calc.: C, 43.8; H, 2.07%. ³¹P NMR (CDCl₃): 86.4 (septet, ${}^{4}J_{PF} = 52.3$ Hz) ppm. ¹⁹F NMR (CDCl₃): -54.2 (d, 6F, ${}^{4}J_{PF} = 52.3$ Hz); -64.6 (s, 3F) ppm. In the second method a solution of PhCH₂MgBr (11.0 mmol) in Et₂O was added dropwise during 5 min to a stirred suspension of CdCl₂ (5.5 mmol) in Et₂O at 0°C. The solution was stirred at this temperature for 1 h, and this was followed by addition in one portion of ArPCl₂ (11.1 mmol) in Et₂O. The mixture was brought to reflux, kept there for 4 h, and then allowed to cool to room temperature. The compound was isolated, purified as above, and obtained with a 64% yield. The second procedure has the advantage that the reaction can be carried out at a higher temperature, although yields are somewhat lower.

A solution of DBU (2.2 mmol) in THF was added during 5 min to a stirred solution of $ArP(CH_2Ph)Cl$ (2.2 mmol) in THF at 0°C. The mixture was allowed to warm to room temperature, and the resulting precipitate removed. The ³¹P NMR spectrum of the filtrate showed only one septet signal, at 218.1 ppm (${}^{4}J_{PF} = 23.7$ Hz) attributed to ArP=CH(Ph), formed with an apparently quantitative yield. UV-visible (THF): λ_{max} 327, 225 nm. The compound decomposed when the THF was removed *in vacuo*, the ³¹P spectrum showing only the presence of decomposition products. It was used *in situ*, however, to yield the derivative with [PtCl₂-(PEt₃)]₂.

3.4. Preparation of the complexes of 1-3 with $[PtCl_2(PEt_3)]_2$

The following reaction was used:

ArP=CR¹R² +
$$\frac{1}{2}$$
[PtCl₂(PEt₃)]₂ \longrightarrow
PtCl₂(PEt₃)(η^1 - ArP=CR¹R²) (4)

In each case the platinum(II) dimer was added to a stirred solution of the phospha-alkene in a 1:2 molar ratio, in CH₂Cl₂ for 1 and in THF for 2 and 3, at room temperature. The mixtures were stirred for 1 h (1), 6 h (2) and 30 min (3). The complex with 1 was isolated at -40° C as clear transparent plates with a 42% yield. Its ³¹P NMR spectrum (CDCl₃) showed it to be the *cis* isomer, ³¹P NMR: 152.1 (¹J_{PPt} = 5006 Hz, ²J_{PAPB} = 18 Hz, P_A(phospha-alkene)); 11.1 (¹J_{PPt} = 3832 Hz, ²J_{PAPB} = 18 Hz, P_B(PEt₃ group)) ppm. ¹⁹F NMR (CDCl₃): -56.8 (6F, ⁵J_{PtF} = 32.5 Hz); -63.0 (s, 3F) ppm. Although the mixture was stirred for a longer period the complex with 2 was present as the *trans* isomer. ³¹P NMR (THF): 245.1 (¹J_{PPt} = 3714 Hz, ²J_{PAPB} = 788 Hz, P_A); 15.4 (¹J_{PPt} = 3000 Hz, ²J_{PAPB} = 787 Hz, P_B) ppm. When the spectrum of the solution containing the complex with 3 was recorded after stirring for 30 min, both *cis* and *trans* isomers were apparent (Fig. 1).

trans isomer ³¹P NMR (THF): 178.6 (${}^{1}J_{PPt} = 2457$ Hz, ${}^{2}J_{P_{A}P_{B}} = 570$ Hz, P_{A}); 15.8 (${}^{1}J_{PPt} = 3253$ Hz, ${}^{2}J_{P_{A}P_{B}} = 569$ Hz, P_{B}) ppm.

cis isomer ³¹P NMR (THF): 149.6 (${}^{1}J_{PPt} = 4600$ Hz, P_A); 9.9 (${}^{1}J_{PPt} = 3219$ Hz, P_B) ppm. After 2 h, only the *cis* isomer was detected.

Acknowledgments

We thank Professor J.F. Nixon and Dr. M.F. Meidine of the University of Sussex for supplying the complex $[PtCl_2(PEt_3)]_2$, R. Coult and Dr. M. Jones of the University of Durham for microanalyses and mass spectra respectively, and the Sciences and Engineering Research Council for the award of a research studentship (to H.P.G.).

References

- 1 J.F. Nixon, Chem. Rev., 88 (1988) 1327.
- 2 (a) M. Regitz and O.J. Scherer (eds.), Multiple Bonds and Low Coordination in Phosphorus Chemistry, Thieme, Stuttgart, 1991;
 (b) L.N. Markovski and V.D. Romanenko, Tetrahedron, 45 (1989) 6019.
- 3 K.B. Dillon and H.P. Goodwin, J. Organomet. Chem., 429 (1992) 169.
- 4 M. Scholz, H.W. Roesky, D. Stalke, K. Keller and F.T. Edelmann, J. Organomet. Chem., 366 (1989) 73.
- 5 G.E. Carr, R.D. Chambers, T.F. Holmes and D.G. Parker, J. Organomet. Chem., 325 (1987) 13.
- 6 G.E. Carr and R.D. Chambers, unpublished work; G.E. Carr, *Ph.D. Thesis*, University of Durham, 1986.
- 7 H. Eshtiagh-Hosseini, H.W. Kroto, J.F. Nixon, M.J. Maah and M.J. Taylor, J. Chem. Soc., Chem. Commun., (1981) 199.
- 8 H.W. Kroto, J.F. Nixon, M.J. Taylor, A.A. Frew and K.W. Muir, Polyhedron, 1 (1982) 89.
- 9 J. Chatt and R.G. Wilkins, J. Chem. Soc., (1952) 273.
- 10 G. Köbrich, K. Flory and W. Drischel, Angew. Chem., Int. Ed. Engl., 3 (1964) 513.